通常通过后处理,涉及降低和后续可视化来解释高维数据的聚类结果。这破坏了数据的含义并混淆了解释。我们提出了算法 - 敏捷的解释方法,以在缩小尺寸中解释聚类结果,同时保留数据的完整性。集群的置换特征重要性代表基于改组特征值并通过自定义分数功能衡量群集分配的变化的一般框架。集群的个体条件期望表明由于数据的变化而导致群集分配的观察变化。聚类的部分依赖性评估整个特征空间的群集分配的平均变化。所有方法都可以与能够通过软标签重新分配实例的任何聚类算法一起使用。与常见的后处理方法(例如主组件分析)相反,引入的方法保持了特征的原始结构。
translated by 谷歌翻译
Learning enabled autonomous systems provide increased capabilities compared to traditional systems. However, the complexity of and probabilistic nature in the underlying methods enabling such capabilities present challenges for current systems engineering processes for assurance, and test, evaluation, verification, and validation (TEVV). This paper provides a preliminary attempt to map recently developed technical approaches in the assurance and TEVV of learning enabled autonomous systems (LEAS) literature to a traditional systems engineering v-model. This mapping categorizes such techniques into three main approaches: development, acquisition, and sustainment. We review the latest techniques to develop safe, reliable, and resilient learning enabled autonomous systems, without recommending radical and impractical changes to existing systems engineering processes. By performing this mapping, we seek to assist acquisition professionals by (i) informing comprehensive test and evaluation planning, and (ii) objectively communicating risk to leaders.
translated by 谷歌翻译
The evolution of wireless communications into 6G and beyond is expected to rely on new machine learning (ML)-based capabilities. These can enable proactive decisions and actions from wireless-network components to sustain quality-of-service (QoS) and user experience. Moreover, new use cases in the area of vehicular and industrial communications will emerge. Specifically in the area of vehicle communication, vehicle-to-everything (V2X) schemes will benefit strongly from such advances. With this in mind, we have conducted a detailed measurement campaign with the purpose of enabling a plethora of diverse ML-based studies. The resulting datasets offer GPS-located wireless measurements across diverse urban environments for both cellular (with two different operators) and sidelink radio access technologies, thus enabling a variety of different studies towards V2X. The datasets are labeled and sampled with a high time resolution. Furthermore, we make the data publicly available with all the necessary information to support the on-boarding of new researchers. We provide an initial analysis of the data showing some of the challenges that ML needs to overcome and the features that ML can leverage, as well as some hints at potential research studies.
translated by 谷歌翻译
Multivariate time series forecasting constitutes important functionality in cyber-physical systems, whose prediction accuracy can be improved significantly by capturing temporal and multivariate correlations among multiple time series. State-of-the-art deep learning methods fail to construct models for full time series because model complexity grows exponentially with time series length. Rather, these methods construct local temporal and multivariate correlations within subsequences, but fail to capture correlations among subsequences, which significantly affect their forecasting accuracy. To capture the temporal and multivariate correlations among subsequences, we design a pattern discovery model, that constructs correlations via diverse pattern functions. While the traditional pattern discovery method uses shared and fixed pattern functions that ignore the diversity across time series. We propose a novel pattern discovery method that can automatically capture diverse and complex time series patterns. We also propose a learnable correlation matrix, that enables the model to capture distinct correlations among multiple time series. Extensive experiments show that our model achieves state-of-the-art prediction accuracy.
translated by 谷歌翻译
Conventional methods for human motion synthesis are either deterministic or struggle with the trade-off between motion diversity and motion quality. In response to these limitations, we introduce MoFusion, i.e., a new denoising-diffusion-based framework for high-quality conditional human motion synthesis that can generate long, temporally plausible, and semantically accurate motions based on a range of conditioning contexts (such as music and text). We also present ways to introduce well-known kinematic losses for motion plausibility within the motion diffusion framework through our scheduled weighting strategy. The learned latent space can be used for several interactive motion editing applications -- like inbetweening, seed conditioning, and text-based editing -- thus, providing crucial abilities for virtual character animation and robotics. Through comprehensive quantitative evaluations and a perceptual user study, we demonstrate the effectiveness of MoFusion compared to the state of the art on established benchmarks in the literature. We urge the reader to watch our supplementary video and visit https://vcai.mpi-inf.mpg.de/projects/MoFusion.
translated by 谷歌翻译
The field of cybersecurity is evolving fast. Experts need to be informed about past, current and - in the best case - upcoming threats, because attacks are becoming more advanced, targets bigger and systems more complex. As this cannot be addressed manually, cybersecurity experts need to rely on machine learning techniques. In the texutual domain, pre-trained language models like BERT have shown to be helpful, by providing a good baseline for further fine-tuning. However, due to the domain-knowledge and many technical terms in cybersecurity general language models might miss the gist of textual information, hence doing more harm than good. For this reason, we create a high-quality dataset and present a language model specifically tailored to the cybersecurity domain, which can serve as a basic building block for cybersecurity systems that deal with natural language. The model is compared with other models based on 15 different domain-dependent extrinsic and intrinsic tasks as well as general tasks from the SuperGLUE benchmark. On the one hand, the results of the intrinsic tasks show that our model improves the internal representation space of words compared to the other models. On the other hand, the extrinsic, domain-dependent tasks, consisting of sequence tagging and classification, show that the model is best in specific application scenarios, in contrast to the others. Furthermore, we show that our approach against catastrophic forgetting works, as the model is able to retrieve the previously trained domain-independent knowledge. The used dataset and trained model are made publicly available
translated by 谷歌翻译
Diverse data formats and ontologies of task-oriented dialogue (TOD) datasets hinder us from developing general dialogue models that perform well on many datasets and studying knowledge transfer between datasets. To address this issue, we present ConvLab-3, a flexible dialogue system toolkit based on a unified TOD data format. In ConvLab-3, different datasets are transformed into one unified format and loaded by models in the same way. As a result, the cost of adapting a new model or dataset is significantly reduced. Compared to the previous releases of ConvLab (Lee et al., 2019b; Zhu et al., 2020b), ConvLab-3 allows developing dialogue systems with much more datasets and enhances the utility of the reinforcement learning (RL) toolkit for dialogue policies. To showcase the use of ConvLab-3 and inspire future work, we present a comprehensive study with various settings. We show the benefit of pre-training on other datasets for few-shot fine-tuning and RL, and encourage evaluating policy with diverse user simulators.
translated by 谷歌翻译
In spite of machine learning's rapid growth, its engineering support is scattered in many forms, and tends to favor certain engineering stages, stakeholders, and evaluation preferences. We envision a capability-based framework, which uses fine-grained specifications for ML model behaviors to unite existing efforts towards better ML engineering. We use concrete scenarios (model design, debugging, and maintenance) to articulate capabilities' broad applications across various different dimensions, and their impact on building safer, more generalizable and more trustworthy models that reflect human needs. Through preliminary experiments, we show capabilities' potential for reflecting model generalizability, which can provide guidance for ML engineering process. We discuss challenges and opportunities for capabilities' integration into ML engineering.
translated by 谷歌翻译
This paper presents a two-step algorithm for online trajectory planning in indoor environments with unknown obstacles. In the first step, sampling-based path planning techniques such as the optimal Rapidly exploring Random Tree (RRT*) algorithm and the Line-of-Sight (LOS) algorithm are employed to generate a collision-free path consisting of multiple waypoints. Then, in the second step, constrained quadratic programming is utilized to compute a smooth trajectory that passes through all computed waypoints. The main contribution of this work is the development of a flexible trajectory planning framework that can detect changes in the environment, such as new obstacles, and compute alternative trajectories in real time. The proposed algorithm actively considers all changes in the environment and performs the replanning process only on waypoints that are occupied by new obstacles. This helps to reduce the computation time and realize the proposed approach in real time. The feasibility of the proposed algorithm is evaluated using the Intel Aero Ready-to-Fly (RTF) quadcopter in simulation and in a real-world experiment.
translated by 谷歌翻译
The new wave of digitization induced by Industry 4.0 calls for ubiquitous and reliable connectivity to perform and automate industrial operations. 5G networks can afford the extreme requirements of heterogeneous vertical applications, but the lack of real data and realistic traffic statistics poses many challenges for the optimization and configuration of the network for industrial environments. In this paper, we investigate the network traffic data generated from a laser cutting machine deployed in a Trumpf factory in Germany. We analyze the traffic statistics, capture the dependencies between the internal states of the machine, and model the network traffic as a production state dependent stochastic process. The two-step model is proposed as follows: first, we model the production process as a multi-state semi-Markov process, then we learn the conditional distributions of the production state dependent packet interarrival time and packet size with generative models. We compare the performance of various generative models including variational autoencoder (VAE), conditional variational autoencoder (CVAE), and generative adversarial network (GAN). The numerical results show a good approximation of the traffic arrival statistics depending on the production state. Among all generative models, CVAE provides in general the best performance in terms of the smallest Kullback-Leibler divergence.
translated by 谷歌翻译